ТOM 94,   №6

MAGNETOTHERMOELASTIC WAVES IN A ROTATING ORTHOTROPIC MEDIUM WITH DIFFUSION



In this paper, the governing partial differential equations for a rotating orthotropic magnetothermoelastic medium with diffusion are proposed on the basis of the Lord–Shulman theory of generalized thermoelasticity and the velocity equation is obtained. The plane wave solution of this equation is indicative of the existence of four quasi-plane waves, namely, quasi-longitudinal displacement (qLD), quasi-thermal (qT), quasi-mass diffusion (qMD), and quasi-transverse displacement (qTD) waves. The real values of the wave speeds are calculated for a particular material, and the effects of anisotropy, as well as of the diffusion, magnetic, and rotation parameters and the angle of incidence on the speeds are shown graphically.
 
Автор:  A. K. Yadav
Ключевые слова:  thermoelasticity, orthotropic medium, diffusion, rotation, magnetic field, speed, plane waves
Стр:  1663

A. K. Yadav.  MAGNETOTHERMOELASTIC WAVES IN A ROTATING ORTHOTROPIC MEDIUM WITH DIFFUSION // Инженерно-физический журнал. . ТOM 94, №6. С. 1663.


Возврат к списку