СПИН-ПОЛЯРИЗОВАННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК В Cd₃As₂ + 44.7 мол.% MnAs

Л.А. Сайпулаева¹, З.Ш. Пирмагомедов¹, М.М. Гаджиалиев¹, А.Г. Алибеков¹, Н.В. Мельникова², В.С. Захвалинский³, А.И. Риль⁴, С.Ф. Маренкин^{4,5}.

 ¹ΦГБУН Институт физики им. Х.И. Амирханова ДНЦ РАН, Махачкала 367015
²Уральский федеральный университет, Институт естественных наук и математики, Екатеринбург620002
³Белгородский государственный национальный исследовательский университет, Белгород308015
⁴Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва119991
⁵Национальный исследовательский технологический университет «МИСиС», Москва119991

Аннотация

Впервые измерены температурные зависимости электросопротивления и намагниченности Cd₃As₂ + 44.7 мол.% MnAs интервале температур 10-350 K. В Обнаружены аномалии, связанные с коллективным ферромагнитных нанокластеров поведением MnAs. кластерным стеклом (clusterglass): СХОДНЫМ С ниже замораживания кластерного стекла T_c температуры электросопротивление имеет металлический характер, выше полупроводниковый; намагниченность в состоянии

кластерного понижается при стекла понижении температуры, причем после T_{cg} снижение более быстрое. Показано, что такое поведение обусловлено спиновой поляризацией собственных электронов в матрице Cd₃As₂ спин-поляризованными электронами, инжектируемыми в нее из ферромагнитных нанокластеров MnAs. С ростом образца, намагниченности всего угол между нанокластеров отдельных намагниченностями уменьшается и спин-поляризованный ток возрастает. Кроме того, увеличение концентрации собственных носителей в матрице приводит к увеличению спинполяризованного тока. Эта концепция подтверждается и вольтамперных характеристик измерениями при напряжениях до 5 V при различных температурах как до (77 и 172 К), так и после Т_{сд} (273.15 и 373.15 К), обнаруживающими отклонение от омичности, возрастающее с напряжением. Это означает, что чем больше спиновая поляризация собственных электронов в Cd_3As_2 , благодаря увеличению инжекции спинполяризованных электронов из MnAs с напряжением, тем больше ток

Введение

В работе [1] были получены композиты с высокими значениями магнетосопротивления, в которых в качестве матрицы использовали полупроводниковые соединения арсенида качестве ферромагнитных кадмия, ав нанокластеров показано [2-6], – MnAs. Было что электрические и магнитные свойства нанокомпозита Cd₃As₂ + MnAs определяются нанокластерами MnAs. Барические зависимости в области 3-4 ГПа удельного электросопротивления, коэффициента Холла, подвижности

носителей заряда, концентрации носителей заряда и магнетосопротивления обнаруживают особенности, связанные с фазовыми переходами. Структурный переход от тетрагональной к моноклинной структуре в Cd₃As₂ происходит в области 2.6-4.67 ГПа [7]. А спинпереориентационный переход в MnAs при ~ 3.8 ГПа и ~ 110 К [8] существенно влияет на транспорт носителей тока и магнетосопротивление данного композита. Пики магнетосопротивления на барических зависимостях повышаются с ростом магнитного поля. Исследования магнетосопротивления Cd₃As₂+44.7 мол.% MnAs обнаруживают инверсию знака при 7.8 ГПа, причем отрицательное магнетосопротивление (ОМС) достигает 0.36%. Поведение электросопротивления Cd₃As₂ + 44.7 мол.% MnAs при высоких давлениях (до 50 ГПа) хорошо согласуется с поведением легированных тройных оксидов переходных элементов и пленочных гетероструктур на их основе [9-11].

Основная цель статьи – объяснение природы обнаруженного нами отклонения от омичности зависмости тока от напряжения в нанокомпозите Cd₃As₂ + 44.7 мол.% MnAs.

Методика исследований

При изучении температурных зависимостей ВАХ образец с контактами помещали в герметически плотную камеру, заполненную газообразным гелием. Вначале камеру опускали в сосуд с жидким азотом для измерений в области температур 77–300 К, а затем помещали в термостат для измерений в интервале 300–372 К. Электродвижущую силу на образце и показания медьконстантановых термопар измеряли потенциометром Ш-

300. При определении зависимости ВАХ от температуры показания напряжения и тока снимали с помощью прибора Keithley 2000.

Исследование намагниченности $Cd_3As_2 + 44.7$ мол.% MnAs проводили с помощью СКВИД-магнитометра (Magnetic Property Measurement System-XL-7 EC) с чувствительностью при измерениях магнитного момента $1 \cdot 10^{-8}$ G·cm³. Масса образца составляла 67.09 mg. Образец охлаждали без поля до температуры 10 K, затем нагревали до 350 K и измеряли намагниченность в поле 100 Oe, вновь охлаждая образец.

Результаты и обсуждение

Cd₃As₂ + 44.7 мол.% MnAs представляет собой сложную систему, состоящую из ферромагнитных гранул расположенных случайным MnAs. образом в полупроводниковой матрице Cd₃As₂ Такая морфология обусловливает неравномерное распределение в объеме образца. Электронноэлектрического поля микроскопическое исследование Cd₃As₂ + 44.7 мол.% MnAs позволило установить, что размеры нанокластеров MnAs варьируются в пределах 10-50 nm [12]. Большинстве характерные диаметры нанокластеров MnAs составляют 20-30 nm. Отдельные экземпляры с размерами более

50 nm, по нашему мнению, могут находиться только в приповерхност ных областях, а не в объеме

Рис.1. Рентгенограмма образца Cd₃As₂+44.7% MnAs.

композита, поскольку последнее привело бы к существенному повышению энергий деформации как матрицы, так и ее вкраплений. Следовательно, вполне обоснованно можно считать, что объемные физические свойства исследуемого нами композитного материала обусловлены нанокластерами MnAs с диаметрами от 20 до 30 nm.

Рентгенограмма Cd₃As₂ +44.7 мол.% MnAs (рис. 1) подтверждает, что он состоит из двух фаз: Cd₃As₂ и MnAs (некоторые рентгенограммы дают минорные пики, относящиеся к CdAs₂).

Микроструктура образца свидетельствует об эвтектическом разделении расплава при отвердевании на систему из двух веществ: Cd_3As_2 и MnAs. Причем, последнее представлено в виде сфероподобных гранул, что может указывать на то, что такое разделение имело место еще в расплаве [12].

температурной Из зависимости электросопротивления композита Cd₃As₂+44.7% MnAs (рис. 2) видно, что для него при температурах ниже критической температуры образования кластерного стекла (clusterglass) $T_{cg} = 241$ К (точка максимума на графике) характерен металлический тип проводимости, а выше этой температуры – полупроводниковый (термоактивационный) тип проводимости. Такое поведение электросопротивления согласуется с СЭМ-картиной скола исследованного образца [12], из которой видно, что образец представляет из себя эвтектический сплав из практически не соприкасающихся друг с другом нанокластеров MnAs, внедренных в полупроводниковую матрицу Cd₃As₂. Если существовала сколь-нибудь значительная бы проводимость перколяционная фазы Cd_3As_2 , то металлический характер проводимости наблюдался бы

вплоть до температуры Кюри 325 К для MnAs. Как видно выше рисунка 2. $T_{cg} \approx 241 \text{ K}$ металлическая ИЗ проводимость сменяется «полупроводниковой». Так как система ферромагнитного двухфазная ИЗ MnAs И немагнитной матрицы Cd₃As₂ имеет место как выше, так и ниже T_{cg}, такое поведение трудно объяснить. Казалось бы, должно иметь место комплексное поведение, соответствующ

ee сумме металлической И полупроводник овой электрической проводимости. И как результат ИХ конкуренции, наблюдаться некая монотонная вплоть ДО температуры

Кюри

 $T_C \approx 325 \text{ K}$

зависимость.

Рис. 2. Температурная зависимость электросопротивления нанокомпозита $Cd_3As_2 + 44.7\%$ MnAs в интервале температур 40 - 380 К. Критическая температура кластерного стекла $T_{cg} = 241$ К, точка Кюри $T_C = 325$ К.

Однако, реальная картина на рис. 2 наводит на мысль о влиянии нанокластеров на резистивные свойства матрицы.

Ключом к разгадке такого аномального поведения электрической проводимости мезоскопической В нанокомпозитной системе двойного является модель обмена Зинеру, по так как зависимости электросопротивления в манганитах и в нанокомпозите

Cd₃As₂ + 44.7% MnAs качественно совпадают. Однако, являются микроскопической атомарной манганиты системой, в которой электрон переходит от катиона марганца Mn₃+ через диамагнитный анион кислорода О₂- к Мп₃+. Причем, вероятность обмена существенно возрастает, когда спины электрона и катионов Mn₃+ и Мп₃+ сонаправлены, т.е. ферромагнитны. При этом электросопротивление при T < T_C ведет себя в соответствии с металлическим типом проводимости. Когда спины соседних катионов не параллельны из-за же температурной дезориентации, т.е. в парамагнитном состоянии при T > T_C, электросопротивление имеет полупроводниковый тип.

Таким образом, точка Кюри T_C микроскопической системы с двойным обменом (например, манганита) аналогична точке кластерного стекла T_{cg} мезоскопической системы $Cd_3As_2 + 44.7\%$ MnAs. Это, продолжая аналогию, позволяет предположить, что не только диполь-дипольное магнитное взаимодействие между нанокластерами MnAs, но и вызванная их намагниченностью спиновая поляризация тока способствует ферромагнитному упорядочению.

На правдоподобность такого сценария указывает аномальное понижение намагниченности с падением температуры после перехода в ферромагнитное состояние (рис. 3). Обычно в подобном случае намагниченность возрастает вследствие уменьшения разупорядочивающего действия температуры. Действительно, с понижением температуры концентрация собственных носителей в матрице Cd₃As₂ уменьшается, что приводит к снижению спин-поляризованного тока между нанокластерами MnAs. Это, в свою очередь, приводит к снижению намагниченности системы, обусловленной упорядочивающим действием спин-поляризованного тока. Уменьшение намагниченности при охлаждении образца от T_{cg} до 10 К составляет около 3,3%. Так что, хотя эффект и небольшой, но достоверный на фоне высокой точности измерений

намагниченнос Это ти наводит на мысль O TOM, ЧТО В данном случае мы имеем дело с мезоскопическ вариантом ИМ двойного обмена. не только схлопывание углов между намагниченнос тями ферромагнитн

нанокластеров

ЫΧ

Рис.3. Температурная зависимость удельной намагниченности Cd₃As₂ + 44.7% MnAs. Точка Кюри $T_{\rm C}$ =325 K соответствует точке перегиба кривой $(\partial^2 I({\rm T})/\partial {\rm T}^2 = 0).$

приводит к заметному увеличению спин-поляризованного тока между ними, но сам этот ток, в свою очередь, благоволит ферромагнитному упорядочению намагниченностей нанокластеров, т.е. возрастанию намагниченности нанокомпозита Cd₃As₂ + 44.7% MnAs. Следовательно, изменяя спин-поляризованный ток с помощью приложенного к образцу электрического поля,

можно изменять намагниченность образца. Так же как это место, например, в манганитах [9]. имеет в сверхпроводниках на основе железа [11], а также В многослойных магнитных сэндвич-структурах на ИХ основе [10]. Но с одним очень важным преимуществом – пробирочная «выплавка» нанокомпозита намного дешевле изготовления полупроводниковой гетероструктуры молекулярно-лучевой эпитаксии. методом R макроскопическом аналоге двойного обмена вместо магнитоактивных катионов выступает мезоскопический кластер MnAs, а в качестве среды, передающей заряд и спин электрона, вместо аниона кислорода O₂- выступает дираковский полуметалл Cd₃As₂ n-типа проводимости. Примечательно, что также как и для систем с двойным обменом, для исследованной нами наноструктуированной ферромагнитными эвтектики ИЗ Cd_3As_2 с мезоскопическими вкраплениями MnAs присущи, как видно из упомянутого выше ОМС, структурные И магнитные фазовые переходы [5].

Как видно из рис. 3, что с ростом температуры после T ≈ 310 К наблюдается резкое уменьшение магнитной восприимчивости материала, что объясняется переходом в парамагнитное «ферромагнитного» состояние. ИЗ «Температура Кюри» T_c композита, оцененная по точке перегиба кривой $\chi(T)$ (где $\partial^2 \chi$)/ $\partial T^2 = 0$), полученной при постоянной напряженности магнитного поля 100 Ое, составляет 325 К (см. рис. 3), что согласуется с данными, полученными ранее для композитов с другим содержанием кластеров MnAs [13] и близка к настоящей точке Кюри $T_{\rm C} = 318$ К истинного ферромагнетика MnAs. Как видно из рис. 4 для исследованного композита характерна малая величина коэрцитивной силы (< 10 Oe), что согласуется с то есть суперпарамагнитными, размерами малыми,

вкраплений MnAs Cd₃As₂ + 44,7 м ол % MnAs лишь по некоторым внешним проявлениям ведет себя как ферромагнетик представляя • собой комплекс нанокластеров MnAs в диэлектрическ 0M «наполнителе» Cd₃As₂. B частности, ОН лишь имитирует

Кюри.

точку

Рис. 4. Участок изотермической петли гистерезиса намагниченности Cd₃As₂+44.7% MnAs при 300 K, демонстрирующий небольшую величину коэрцитивной силы (10 Oe). Во вставке петля намагниченности – ввиду малости гистерезис незаметен. Зеленые точки сняты при росте магнитного поля, красные при сбавлении.

Вот почему температура Кюри для него взята в кавычки, а соответствующий индекс является строчной буквой. соответствующей первой букве слова critical, но не фамилии Curie, начинающейся с заглавной буквы. Не называя композит Cd₃As₂ + 44,7 мол.% MnAs истинным ферромагнетиком, мы подразумевает, что магнитные взаимодействия в его объеме неоднородны: лишь внутри существует ферромагнитное кластеров обменное взаимодействие, тогда как меж ними имеет место лишь магнитное диполь-дипольное взаимодействие, которое при называемой точке Кюри $T_c = 325$ К оказывается так

ферромагнитно способным упорядочить суперпарамагнитные кластеры MnAs. Во многих работах терминологического различения, проводят межли не ферромагнитным суперпарамагнитным истинным И состоянием. По-нашему, правы и те, и другие. Если рассматривать магнитные взаимодействия во всем объеме образца, то эти состояния следует различать. Если же интересует лишь внешнее упорядоченное состояние, когда все «магнитные стрелки» смотрят в одну и ту же сторону, то отсутствие строгого терминологического различения ферромагнетизмом между И суперпарамагнетизмом Тем допустимо. более. действительности, что, в суперпарамагнетизм, ничего обшего не имеет С парамагнетизмом: суперпарамагнетиком называют однодоменную ферромагнитную частицу лишь для того, неустойчивость чтобы подчеркнуть спонтанную ee направления намагниченности относительно внешнего магнитного поля, аналогичного поведению магнитного момента парамагнитного молекулы, ИЛИ атома либо элементарной

частицы, обладающей отличным от нуля магнитным моментом (электрон, протон и т.д.). Для выявления возможного вклада в электрическу

Рис. 5. Изотермические зависимости электросопротивления гранулированного нанокомпозитаCd₃As₂+MnAs от напряжения при различных температурах в ферромагнитном (77 и 172 К) и в парамагнитном (273.15 и 373.15 К) состояниях.

ю проводимость спиновой поляризации носителей тока нами были проведены измерения изотермических зависимостей электросопротивления $Cd_3As_2 + 44.7\%$ MnAs от приложенного напряжения как при температурах ниже T_{cg} =241 K, а именно при 77.8 и 172 K, так и выше нее, при 273.15 и 373.15 K (рис.5).

В отсутствии спиновой поляризации носителей в пропорционален образце исследованном ток приложенному напряжению и выполняется закон Ома электросопротивление Однако. постоянно. электросопротивление зависит от напряжения (рис. 5). В состоянии кластерного стекла при $T < T_{cg}$ сопротивление падает нелинейно и резко. При этом его относительное изменение при 172 К значительно выше, чем при азотной температуре, а именно, в 2.2 и 1.3 раза. То, что начало зависимости при 172 К выше, чем начало зависимости при 77 K объяснимо «металлическим» характером проводимости в состоянии кластерного стекла, т.е. при $T < T_{cg}$.

При $T > T_{cg} = 241$ К, т.е. при 273.15 и 373.15 К, электросопротивление понижается линейно, причем с почти одинаковыми наклонами прямых. При температурах

Рис. 6. Изотермическая магнитно-полевая зависимость удельного электросопротивления Cd₃As₂+44.7 мол.% MnAs при 300K.

ов MnAs. Поэтому спиновая поляризация при $T > T_{cg}$ проявляется слабее. При $T > T_{cg}$ поведение электросопротивления сменяется на полупроводниковое, при котором с ростом температуры сопротивление понижается. Вот почему на рис. 6 зависимость при 373.15 К расположена ниже, чем зависимость при 273.15 К.

Уменьшение электросопротивления с увеличением приложенного напряжения объясняется усилением спиновой поляризации с ростом тока: чем больше спинполяризованных электронов проникает из нанокластеров MnAs во вмещающую их матрицу Cd₃As₂, тем сильнее они поляризуют собственные электроны этой матрицы; в результате ток увеличивается, так как электронам нет необходимости затрачивать энергию на переворот спина, как это происходит в том случае, когда его направление не совпадает с намагниченностью соседних нанокластеров Это подтверждается зависимостями MnAs. электросопротивления от магнитного поля на рис. 6. Как видно из него, при температуре 300 К, т.е. вблизи ТС, электросопротивление практически линейно падает с увеличением магнитного поля. Это указывает на то, что упорядочение полем направлений магнитным намагниченностей нанокластеров MnAs благоприятствует протеканию электрического тока спин-поляризованных электронов между ними.

Отдельного рассмотрения требует изотермическая зависимость электросопротивления от напряжения при 373.15 К, так как она наблюдается, когда значительная доля нанокластеров MnAs уже парамагнитны: точка Кюри нанокластеров MnAs в матрице $Cd_3As_2 T_C = 325$ К. Тем не менее, и в этом случае имеет место влияние спиновой поляризации. Возможно, что такое поведение обусловлено существованием некоторой концентрации ферромагнитных

нанокластеров MnAs и выше точки Кюри, как это наблюдалось в манганитах [14]. Действительно, как видно из рис. 3, даже при температуре 350 К имеется некоторая отличная от нуля намагниченность, которая благодаря спин-поляризованнному току, наведенному внешним электрическим полем, увеличивается и дотягивает до температуры даже выше, чем 373.15 К. Кроме того, термодинамическим флуктуациям благодаря И мезоскопическим структурным неоднородностям (например, различным размерам нанокластеров и, следовательно, различным сжимающим их упругим силам стороны матрицы Cd₃As₂) мезоскопические co ферромагнитные состояния могут существовать выше точки Кюри значительно в парамагнитном присуще состоянии. Такое поведение комплексным соединениям переходных элементов: тройным сплавам, к которым относится и Cd₃As₂ + 44.7% MnAs, тройным оксидам – манганитам, никелатам, кобальтитам и т.п. Что касается влияния «материнской породы» на содержащиеся в ней ферромагнитные включения, заметим, что точка Кюри для MnAs внутри Cd₃As₂ составляет 325 К, тогда как для MnAs в свободном виде - 318 К [15, 16]. То есть матрица Cd₃As₂, всесторонне сжимая нанокластеры MnAs, повышает их точку Кюри на целых 7 К. Это дает дополнительное технологическое преимущество нанокомпозитам, заключающееся в том, что подбором матрицы возможно соответствующей управлять магнитными характеристиками ее содержимого. Возможно также, что и сама матрица Cd₃As₂ проявляет магнитные свойства. С точки этой зрения, наши результаты согласуются с тем, что в некоторых в композитах на основе Cd₃As₂ достоверно установлено наличие двойного обмена и соответствующего ферромагнитного поведения

[13, 17]. Спин-поляризованный ток наблюдался в магнитных сэндвич-структурах [9-11], состоящих из слоев магнитного и немагнитного материала примерно той же толщины, что и расстояние между кластерамиMnAs. Эти исследования поддерживают представленное нами электросопротивления объяснение поведения в Cd₃As₂+44.7% MnAs спиновой нанокомпозите делокализованных электронов поляризацией ИЗ нанокластеров MnAs собственными носителями тока в зоне проводимости Cd₃As_{2.}

Низкая концентрация электронов в матрице Cd₃As₂, в особенности при низких температурах, при $T < T_{cg}$, не позволяет привлечь механизм обменного взаимодействия Рудермана-Киттеля-Касуйи-Йосиды (РККИ-механизм) для объяснения наблюдаемого эффекта спиновой поляризации электрического тока нанокомпозите в Cd₃As₂ + 44.7% MnAs изначальной РККИ-поляризацией магнитными моментами кластеров MnAs носителей тока в Таким образом, предлагаемая нами матрице Cd₃As₂. интерпретация аномального понижения электросопротивления исследованного композита в зависимости от приложенного напряжения, как следствие спин-поляризованного тока в объемных гранулированных нанокомпозитных структурах, приводящего к линейному понижению электросопротивления среды, представляется вполне актуальной.

Заключение

Исследованы ВАХ нанокомпозита Cd₃As₂ + 44.7% MnAs при различных температурах, температурные зависимости электросопротивления, удельной намагниченности, рассчитаны изотермы

в ферроэлектросопротивления и парамагнитном интерпретация состояниях. Приведена аномального электросопротивления этого понижения композита В зависимости от приложенного напряжения как следствие возникновения спин-поляризованного тока - спиновой электронов поляризации делокализованных ИЗ нанокластеров MnAs собственными носителями заряда в зоне проводимости Cd₃As₂. Таким образом, предлагаемая интерпретация аномального нами понижения электросопротивления исследованного композита В зависимости от приложенного напряжения представляется вполне актуальной.

- Риль А.И., Кочура А.В., Маренкин С.Ф и др. Микроструктура кристаллов системы Cd₃As₂ – MnAs // Известия Юго-Западного государственного университета. - 2017. -Т. 7. -№2(23). С. 120-134.
- 2. Л.А. Сайпулаева, А.Г. Алибеков и др. Физика и техника высоких давлений **28**, 5 (2018).
- 3. А.Г. Алибеков, А.Ю. Моллаев, Л.А. Сайпуллаева и др. ЖНХ **62**, 87 (2017).
- 4. А.Г. Алибеков и др. Неорганические материалы **52**, 402 (2016).
- 5. Н.В. Мельникова, А.В. Тебеньков, Г.В. Суханова и др. ФТТ **60**, 490 (2018).
- 6. *ФТТ 19 год*
- L. He, Y. Jia, S. Zhang et al. Quantum Materials 1, 16014 (2016).
- 8. В.П. Глазков, Д.П. Козленко, К.М. Подурец и др. Кристаллография **48**, 59 (2003)

- 9. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y.Tokura, Nature **388**, 50 (1997).
- E.B. Myers, D.C. Ralph, J.A. Katine, R.N. Louie and R.A. Buhrman, Science 285, 867 (1999).
- 11. S. Choi et al. Phys. Rev. Lett. 119, 227001 (2017).
- Сайпулаева, М.М. 12. Л.А. Гаджиалиев, З.Ш. Пирмагомедов, Т.Н. Эфендиева, А.Г. Алибеков, Абдулвагидов, Н.В. Мельникова, Ш.Б. B.C. Захвалинский, С.Ф. Маренкин, Журналтехническойфизики, том 90, вып. 7. 1128(200)
- 13. С.Ф. Маренкин, В.М. Трухан, И.В. Федорченко, ЖНХ **59**, 511 (2014).
- 14. V.V. Matveev, E. Ylinen, V.S. Zakhvalinskii and R. Laiho, J. Phys.: Cond. Matt. **19** (2007) 226209.
- A. Ney, T. Hesjedal and K. H. Ploog, Phys. Rev. B 72, 212412 (2005).
- Ч. Киттель, Введение в физику твердого тела, Мир, Москва (1978).
- V. F. Sapega, M. Moreno, M. Ramsteiner, L. Daweritz, and K. Ploog, Phys. Rew. B 66, 075217 (2002).