УДК 544.774.4+547.855.7+577.164.17+535.36

Игнатович Ж.В., Шумская Е.Е., Новик Х.А., Петкевич А.В., Синютич Ю.В., Королева Е.В.

СИНТЕЗ И СВОЙСТВА БИОКОМПОЗИТОВ НА ОСНОВЕ МАГНЕТИТА И ГИДРОКСИАПАТИТА, ФУНКЦИОНАЛИЗИРОВАННЫХ НАНОЧАСТИЦА-МИ ЗОЛОТА, СЕРЕБРА И БИОЛОГИЧЕСКИ АКТИВНЫМИ СОЕДИНЕНИЯМИ

ИХНМ НАН Беларуси, 220141, Минск, ул. Ф.Скорины, 36 e-mail: <u>ignatovich@ichnm. by</u>

Введение. Наночастицы (НЧ) оксидов железа и их композиты с частицами золота и серебра находят широкое применение в целевой доставке лекарственных веществ благодаря их низкой токсичности и хорошей биосовместимости [1].

Нами разработан новый способ получения бионанокомпозитов соединений С1-С6 ряда 2-аминопиримидина (БАС) с магнитным носителем на основе наноразмерного гидроксиаппатита (ГА), покрытого НЧ магнетита. На производных 2-аминопиримидина разработаны основе противоопухолевые лекарственные препараты, используемые терапии хронического миелолейкоза, в стромальных опухолей желудочно-кишечного тракта и др. [2]. С целью повышения биосовместимости композитов их поверхность модифицировали НЧ золота или серебра и полиальдегиддекстраном (ПАД). ПАД в качестве основы нанокомпозита может за счет наличия альдегидных групп биоактивными образовывать ковалентные связи с соединениями и пролонгировать их высвобождение из

1

композита. Известно, что ПАД легко метаболизируется в организме и не отторгается тканями человека [3].

методы. В работе использовали Приборы и N_2H_4 ·2HCl, FeSO₄·7H₂O и FeCl₃·6H₂O, поливинилпирролидон (ПВП) К 25, декстраны Т 20 и Т 500, наноразмерный ГА, полученный по методу [4]. Биокомпозиты получали на основе соединений С1-С6 (БАС), синтезированных по методике [5]. Начальные концентрации компонентов в реакционной среде составляли 10-30 об. % ДМСО, 0.05-0.50 мМ БАС С1-С6, 90 мМ N₂H₄·2HCl, 2.0 М аммиака, 0.004н HCl, 15 мМ FeSO4·7H2O, 30 мМ FeCl₃·6H₂O. Для получения композита [(ГА)Fe₃O₄)ПАД-C1-C6]Ag (или Au) в конце синтеза в реакционную среду вносили 7,2 мкл водного раствора AgNO₃ (или HAuCl₄). Золи центрифугировали 5 мин при 5000 об/мин, супернатант удаляли, осадок промывали этанолом и диспергировали в водном растворе 0.1 г/л ПВП или дистиллированной воде. ИК спектры получены на Фурьеспектрометре Bruker Tenzor 27 (в таблетках KBr) в области 400-4000 см⁻¹. Размер и форму частиц оценивали методом просвечивающей электронной микроскопии («JEM– 100СХ», Япония) и сканирующей электронной микроскопии («JEOL JCM-6000 Plus Neoscope», Япония). Гидродинамические характеристики частиц определяли на анализаторе ZetaSizer Nano-ZS («Malvern», Великобритания) в золях на дистиллированной воде. Магнитные характеристики композитов регистрировались на вибрационном магнитометре (Cryogenic LTD) в магнитных полях до 30000 Э при температуре 300 К.

Результаты и обсуждение. Частицы исходного наноразмерного ГА имеют вытянутую овальную форму (длина ~75 нм), которая изменяется после связывания с НЧ магнетита. На ПЭМ изображении композита (ГА)Fe₃O₄ можно различить от одной до нескольких НЧ магнетита на поверхности ГА (рис. 1(а).

Рис. 1. ПЭМ изображение композита (ГА)Fe₃O₄ (а) и ((ГА)Fe₃O₄)ПАД-**С5** (в), х 100000 раз, СЭМ изображение (б).

Малый размер, низкие значения коэрцетивности (Нс) и квадратичности петель гистерезиса (Mr/Ms) свидетельствуют о парамагнитных свойствах композитов, что не агломерировать (табл. 1). позволяют частицам Относительно большое значение намагниченности насыщения (Ms) образцов определяет простоту манипулирования НЧ в магнитном поле. Незначительные отличия величин Mr/Ms образцов указывают, что при осаждении на поверхность НЧ изменения незначительны. БАС

Изменение величины Ms указывает на изменение доли магнитного компонента в составе образца и может отражать эффективность присоединения БАС к магнитному ядру-носителю.

Образец	Hc,	Mr	Ms,	Mr/Ms
	oe	(остаточная	(намагнич.	
		намагнич),	насыщения),	
		emu/g	emu/g	
((ГА)Fe ₃ O ₄)ПАД-C1	38	1,4	37,1	0,0377
((ГА)Fe ₃ O ₄)ПАД-C2	38	1,4	41,0	0,0342
((ГА)Fe ₃ O ₄)ПАД-СЗ	36	1,1	27,4	0,0401
((ГА)Fe ₃ O ₄)ПАД-С4	39	1,6	36,5	0,0438
((ГА)Fe ₃ O ₄)ПАД-C5	44	1,45	29,2	0,0497
((ГА)Fe ₃ O ₄)ПАД-С6	44	1,2	25,2	0,0476

Таблица 1. Магнитные свойства образцов биокомпозитов

Присутствие БАС и ПАД в структуре магнитных наноносителей подтверждается элементным составом композитов ((ГА)Fe₃O₄)ПАД-БАС (получен на ЭДСдетекторе JEOL (Япония)): С (5-6%), N (5-7 %), O (38-41%), P (2-3%), Fe(40-42%), Ca (6-8%).

В ИК спектрах композитов ((ГА)Fe₃O₄)ПАД-БАС имеются полосы валентных колебаний групп NH бензогидразидов **C4-C6** в области 3500–3430см⁻¹, амидной (БАС) и альдегидной (ПАД) групп С=О в области 1699–1680 см⁻¹ и полосы деформационных колебаний NH групп при 1590–1580 см⁻¹.

Массовая доля (ω , %) включенных в композиты БАС С1-С6, определенная по формуле: $\omega = m_{\rm B} \cdot 100/(m_{\rm cK} + m_{\rm B})$, где $m_{\rm B}$ – количество (мг) включенного БАС; $m_{\rm cK}$ – масса (мг) высушенных композитов, содержащих БАС, составляет от 15 - 25 %. Эффективность включения БАС в композиты 90-94%. Потери БАС при двукратной промывке осадков не более 5% от массы включенного.

Практически полное высвобождение БАС из биокомпозита [(ГА)Fe₃O₄]C2 проходит в кислой среде, моделирующей среду желудка, в течение 4-6 ч. В композитах с ПАД ((ГА)Fe₃O₄)ПАД-C6 из-за медленного гидролиза в кислой среде ковалентной связи C=N время высвобождения БАС составляет 20-21 ч.

	Диаметр	Индекс	ξ-
Образец	частиц,	полидис-	потенциал,
	± 10 нм	персности PdI	мВ
$(\Gamma A)Fe_3O_4$	730	0.570	-8.5
$[(\Gamma A)Fe_3O_4]C1$	870	0.007	-23.1
$[(\Gamma A)Fe_3O_4]C2$	840	0.136	-24.1
$[(\Gamma A)Fe_3O_4]C3$	920	0.064	-22.8
[(ГА)Fe ₃ O ₄]ПАД-С4	900	0.111	-6.4
[(ГА)Fe ₃ O ₄]ПАД-С 5	1070	0.217	-19.6
[(ГА)Fe ₃ O ₄]ПАД-С6	580	0.104	-21.5
[((ГА)Fe ₃ O ₄)ПАД- С3]Au	935	0.316	5.92
[((ГА)Fe ₃ O ₄)ПАД- С3]Аg	870	0.186	-14.5
[((ГА)Fe ₃ O ₄)ПАД- С1]Au	1376	0.076	10.5
[((ГА)Fe ₃ O ₄)ПАД- С1]Аg	1120	0.350	11.3
[((ГА)Fe ₃ O ₄)ПАД- С5]Au	805	0.290	-11.5
[((ГА)Fe ₃ O ₄)ПАД- С5]Аg	933	0.388	-24.8
[((ГА)Fe ₃ O ₄)ПАД- С6]Аи	725	0.204	-9.46
[((ГА)Fe ₃ O ₄)ПАД- С6]Аg	1370	0.193	-16.3

Таблица 2. Гидродинамические характеристики композитов на основе гидроксиапатита и магнетита

Гидродинамические характеристики композитов (табл. 2) указывают, что биокомпозиты на основе НЧ гидроксиапатита, магнетита, НЧ Ад, Аи и производных 2ариламинопиримидина имеют в сравнении с исходными НЧ (ГА)Fe₃O₄ больший гидродинамический диаметр и отличаются величиной ξ-потенциала от образцов композитов [(ГА)Fe₃O₄]БАС, [(ГА)Fe₃O₄]ПАД-БАС. Наибольшее по модулю значение ξ-потенциала у биокомпозита [((ГА)Fe₃O₄)ПАД-**С1**]Аg. Существенные различия в размерах частиц обусловлены агломерацией НЧ и композитов в водной среде.

Предложенная Выводы. методика получения формировать позволяет магнитный композитов наноноситель и одновременно функционализировать его БАС. Свойства композитов незначительно варьируются в зависимости от иммобилизуемого БАС, и существенного изменения в магнитных свойствах композитов разного Высвобождение состава происходит. БАС ИЗ не композитов происходит в течение 4-6 часов, при наличии ПАД из-за медленного гидролиза в кислой среде ковалентной –С=N– связи увеличивается до 20-21 часа.

СПИСОК ЛИТЕРАТУРЫ

1. Nanochemistry and Nanomedicine for Nanoparticlebased Diagnostics and Therapy. / G.Chen [et al.] // Chem. Rev. – 2016. – Vol. 116, \mathbb{N}_{2} 5. – P. 2826-2885.

2. Aminopyrimidine derivatives as protein kinases inhibitors. Molecular design, synthesis, and biologic activity. / E.V. Koroleva [et al.] // Russ. J. Org. Chem. – 2016. –Vol. 52. – P. 139-177.

3. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. / S.Tarvirdipour [et al] // Int. J. of pharmaceutic 2016. – Vol. 501 – P. 331-341.

4. Boanini E. Ionic substitutions in calcium phosphates synthesized at low temperature. / E.Boanini, M.Gazzano, A.Bigi // Acta Biomaterialia. –2010. –Vol. 6, № 6. – P. 1882-1894.

5. Синтез новых производных арилкарбоновых кислот, содержащих гетероциклические заместители. / Е.В.Королева [и др.] // Изв. НАН Беларуси. Сер. хим. наук. 2015. – №1 – С.63-69.