Volume 90,   № 1

SIMULATION OF THE ACTION OF A SHOCK WAVE ON TITANIUM ALLOY


The laws and mechanism of fracture of coarse-grain and ultrafi ne-grain titanium under shock-wave loading has been investigated. For the shock wave generator a "SINUS-7" accelerator emitting a nanosecond relativistic highcurrent electron beam was used. To test the high-velocity impact at velocities of the order of 2500 m/s, a ballistic installation of caliber 23 mm was used. The mathematical simulation of the high-velocity interaction was carried out with account for the fracture, the phase transitions, and the dependence of the strength characteristics of materials on the internal energy within the framework of continuum mechanics. For both granular structures the general laws and features of the fracture have been established.

The laws and mechanism of fracture of coarse-grain and ultrafi ne-grain titanium under shock-wave loading has been investigated. For the shock wave generator a "SINUS-7" accelerator emitting a nanosecond relativistic highcurrent electron beam was used. To test the high-velocity impact at velocities of the order of 2500 m/s, a ballistic installation of caliber 23 mm was used. The mathematical simulation of the high-velocity interaction was carried out with account for the fracture, the phase transitions, and the dependence of the strength characteristics of materials on the internal energy within the framework of continuum mechanics. For both granular structures the general laws and features of the fracture have been established.
Author:  S. A. Afanas'eva, N. N. Belov, V. V. Burkin, UDC 538.91:539.3 E. F. Dudarev, A. N. Ishchenko, K. S. Rogaev, A. N. Tabachenko, M. V. Khabibullin, and N. T. Yugov
Keywords:  shock-wave loading, mathematical and experimental simulation, titanium, ultrafi ne-grain and coarsegrain structures
Page:  24

S. A. Afanas'eva, N. N. Belov, V. V. Burkin, UDC 538.91:539.3 E. F. Dudarev, A. N. Ishchenko, K. S. Rogaev, A. N. Tabachenko, M. V. Khabibullin, and N. T. Yugov.  SIMULATION OF THE ACTION OF A SHOCK WAVE ON TITANIUM ALLOY //Journal of engineering physics and thermophysics. . Volume 90, № 1. P. 24 .


Back to list